대한민국 도시기반 웹사이트, SPH 데이터샘 론칭!

대한민국 도시들을 기록합니다_DATASAM

SPH가 선보이는 새로운 도시기반 웹사이트

 

 

안녕하세요! SPH입니다.

 

해외 시장을 분석할 때, 직접 그 나라에서 발로 뛰지 않아도 코트라를 통해 다양한 정보를 얻을 수 있습니다.

그렇다면, 한국 도시를 분석할 땐 어떻게 할까요?

SPH가 론칭한 도시기반의 새로운 웹사이트, 데이터샘을 이용해 도시 분석 데이터를 수집해 보세요!

 

데이터샘은 2021년 9월, 위치 인텔리전스 솔루션 전문 기업 SPH가 런칭한 웹사이트로 국내 여러 도시의 데이터를 제공합니다.

데이터샘은 어떻게 도시 데이터를 보여주는지 함께 둘러볼까요?

 

1.다양한 카테고리

데이터샘은 8가지 카테고리(정치·사회, 관광, 인구, 경제, 주택, 편의시설, 의료, 교육)에 대한 분석 자료를 제공해 전국 일주를 하지 않아도! 다양한 분야에 관한 한국 도시 정보를 얻을 수 있습니다.

 

2.명확한 출처 표기로 신뢰도 UP

공공 및 민간에서 얻은 로우 데이터(Raw data)의 출처를 표기하여 신뢰도를 높입니다.

 

3.자료의 시각화

이해하기 어려운 정보는 없다! 시각화 차트를 통해 한눈에 쉽고 빠르게 이해할 수 있습니다.

또한, 지도에 분포도를 표시하고, 지역 내 주요 인물의 사진을 제공하여 직관적으로 인식할 수 있습니다.

 

4.최신 기술을 활용한 리포트

SPH의 데이터 컨설팅, 맞춤형 데이터 시각화 대시보드 구축, 자체 개발 AI 기술을 이용하여 카테고리별 리포트를 제공합니다.

SPH의 시각으로 해석한 리포트는 특히 더 흥미롭습니다! 이 외에도 다양한 주제가 준비되어 있으니 둘러보시는 것을 추천드립니다!

 


 

현재 데이터샘에서 기록한 도시는 아래와 같습니다.

(서울 – 서울특별시, 강남구, 서초구, 마포구 / 수도권 – 인천광역시, 용인시 / 충청권 – 대전광역시, 세종특별자치시 / 강원권 – 강릉시, 춘천시 / 경상권 – 부산광역시, 진주시 / 전라권 – 광주광역시, 전주시)

 

더 많은 도시의 데이터를 구축하는 그날까지! 데이터샘에 대한 뜨거운 관심 부탁드립니다~

데이터샘 바로 가기 또는 관련 뉴스기사를 보고 싶으시다면 클릭해주시기 바랍니다 :)

 

SPH는 Google Maps, SuperMap, Maxar Technologies 등 다양한 케이스에 존재하는 다양한 제품군을 보유하고있는 고객의 사례에 꼭 맞는  무료 세미나 및 인적 컨설팅을 제공하고 있습니다. 각 케이스에 더욱 자세한 이야기를 나누고 싶으시다면,  여기 에서 문의 주시길 바라며, SPH에서 발행하는  GIS / 로케이션인텔리전스 관련 최신 소식 을 받아보고 싶으신 분들은  페이스북 페이지  또는  뉴스레터 를 구독 해 주시길 바랍니다. 감사합니다.

 

인공지능이 추천하는 국내 관광 코스는?

인공지능이 추천하는 국내 관광 코스는?

(feat. 부산광역시, 여수시)

 

What? – 인기 관광 코스 찾기

<코로나19 이후 다시 주목받게 된 국내 여행>

 

 

  안녕하세요! SPH 데이터 컨설팅팀입니다. 무더운 여름, 더위를 피하기 위한 여행 계획은 다들 세우셨나요? 🏝
코로나19 이후 해외여행이 어려워지면서 국내 여행이 주목받고 있습니다. 해외여행은 코로나19 팬데믹 사태 이후에 관광객 수가 1990년 수준으로 급감하였다고 합니다. 한국만 보더라도 해외여행을 대체할 여행지로 제주도, 부산, 여수 등이 손꼽히고 있는데요!
여행이 핫 키워드인 요즘, SPH 데이터 컨설팅팀은 국내 관광코스를 추천드릴 수 있게 인공지능을 이용하여 야심 차게 분석해보았습니다. 

 

 힘들고 어려운 관광 코스가 아닌 사람들이 상식적으로 생각하는 여행 스케줄을 실제 빅데이터를 기반으로 관광 코스를 검증하면서, 관광 정책을 실제 기획하고 실행하는 정책 결정자분들께 인사이트를 제공할 수 있어 큰 의미가 있는 데이터 분석이었는데요. 한 번 같이 확인해보실까요?

 

“ 전주 관광할때 같이 방문할 수 있는 1타 3피 관광. 할 수 있을까?”

 분석에 앞서 저희가 원하는 최종 분석 목표에 대해 말씀드리자면 빅데이터를 통해 주요 관광 도시와 가장 효율적으로 연계될 수 있는 여타 도시를 찾아 관광 거점을 만들어내는 것입니다. 우리의 소중한 휴가를 부산뿐만 아니라 다른 지역까지 여행할 수 있다면? 뜻깊은 여행이 될 것 같습니다.

 

How? – 1/2 Data

 

 

 그렇다면 어떤 데이터를 이용해서 관광 코스를 선정해볼 수 있을까요? 맛집은 따로 광고하지 않아도 문지방 닳도록 손님이 끊이질 않습니다. 입소문으로 맛집이 되는 경우가 큰대요! 하지만 저희는 ‘소문’에 의지하지 않고 데이터에 기반하여 관광 코스를 선정해보려고 합니다. 데이터는 SK텔레콤 통신 데이터를 기반으로 분석해보려고 합니다.

 

<부산 광역시가 포함된 동선 데이터>

 

 통신 데이터에는 동선 데이터가 있습니다. 그리고 50만 개가 넘는 동선 데이터는 여행객의 행동 패턴이라고 볼 수 있습니다. 여행객이 남긴 발자취가 담긴 데이터인데요. 이 동선 데이터에는 성별, 나이 대, 그 동선을 이용한 인구 수 등이 포함되어 있습니다. SK 텔레콤의 전문 기술을 통해 추계된 인구 통계 데이터로써 SK 텔레콤 가입자 뿐만 아니라 전체 인구를 추산한 데이터를 기반으로 분석을 하여 데이터에 대한 정확도가 한층 더 높은 것을 알 수 있습니다. 

 

<통신 빅데이터 산출 기준>

 

 전체 동선 데이터 중 분석을 위해 선별한 데이터는 남부권입니다. 무더운 더위를 피하기 위해 경상도 · 전라도 여행을 고려하고 계시다면, 이번 분석 결과에 더 집중하시면 좋은 정보 얻어 가실 수 있을 것 같습니다! 또한 관광객이 아닌 거주민이 포함된다면 분석 결과에 오류가 있을 수 있으니, 2019년 사계절 비성수기와 통근, 통학 및 출퇴근 이동과 같은 일정한 패턴을 보이는 데이터는 제외했습니다. 

How? – 2/2 Analysis

 분석에는 딥러닝, 머신러닝 알고리즘을 이용했습니다. 인공지능이 추천한 관광 코스를 알기 위해 텍스트로 되어있는 동선 데이터를 네트워크 그래프로 변환하였는데요. 여기서 잠깐! 시퀀스 모델인 RNN이나 LSTM을 이용하지 않은 이유에 대해 여쭤보실 수 있습니다. 

“동선 ≠ 문장”

동선 데이터의 구조를 보자면 부산 → 완도라는 비정형 데이터로 이루어져 있습니다. 또한 부산 → 완도 → 부산과 같이 부산이 두 번 이상 포함되는 동선도 있으며 부산 → 완도처럼 전혀 다른 방향성을 지닌 데이터도 있습니다. 즉, 문장처럼 규칙이 있는 데이터가 아닌데요. 이와 같은 구조에서 RNN이나 LSTM을 이용한다면 부산 → 완도가 완도 → 부산보다 더 많이 언급될 경우 관광 코스 예측 시 부산 → 완도가 선정될 가능성이 큽니다. 하지만 저흰 동선 자체를 하나의 변수 데이터로 보기 위함이기에 네트워크 그래프로 표현하였습니다.

 

“수요가 있고 연계성이 좋은 동선 = 인기 관광 코스” 

 

관광 코스 선정에 있어서 주요 키워드인 PPI 알고리즘을 설명드리겠습니다. 위에 설명드린 동선의 네트워크 그래프 화가 끝났다면 가장 큰 두 축은 1. 동선 유사도(연계성)과 2. 군집분석(수요가 있는 동선 찾기)입니다. 지역에서 다른 지역으로 이동하기가 쉽고 많은 관광객들이 찾는 동선이라는 두 마리 토끼를 모두 잡는 지수를 산출해 하기 때문에 아래와 같은 과정을 갖게 되었습니다. 자칫 복잡해 보이지만 아래에서 쉽게 설명드리겠습니다.

 

<PPI 산출 알고리즘>

 

 

01. Graph Edit Distance (동선 유사도)

A동선과 B동선의 차이는?

 

 

 

 

 동선 유사도 (Graph Edit Distance)라는 단어가 생소하게 들리실 수 있을 것 같습니다. 쉽게 접근하자면, 부산 → 완도 동선과 하동 → 부산 동선의 차이점을 컴퓨터는 과연 어떻게 찾아낼까요? 네트워크 그래프로 표현된 동선의 차이점은 동선 유사도를 통해 산술적으로 나타낼 수 있는데요. 노드와 엣지로 표현된 동선들이 다른 동선으로 변환되는 데의 cost를 표현하기 때문에, 동선 유사도 수치가 높을수록 A동 선과 B 동선은 유사성이 떨어진다고 볼 수 있습니다. 그렇게 각 동선과 다른 50만 개의 동선들과의 동선 유사도를 계산하여 평균값을 내어 ‘이 동선은 다른 동선들과의 연계성이 높고/낮다’를 수치로 표현할 수 있습니다. 하지만 동선이 연계성이 가장 높다고 해서 무작정 인기 동선으로 선정하기에는 불충분합니다. 인기 동선은 ‘수요’가 있어야 인기 동선입니다. 그래서 소개드릴 두 번째 과정을 통해 수요가 높은 동선을 선정하였습니다.

 

02. 임베딩 (Embedding), 그리고 군집 분석

가장 인기있는 동선 그룹은?

 

 마지막 과정은 임베딩, 군집분석, 그리고 인기 동선 그룹 선정입니다.

 

<그래프 임베딩 시각화 도움 자료>

임베딩이란 무엇일까요? 임베딩은 컴퓨터가 이해할 수 있는 숫자 형태인 vector로 표현하는 과정이라고 생각하시면 쉽습니다. 부산 → 완도라는 동선을 컴퓨터는 이해하기 어려우니 벡터 형식으로 표현하여 분석할 수 있게 만드는 중요한 과정입니다. 50만 개 이상의 동선 네트워크 임베딩에는 Graph2vec이라는 모델을 이용했는데요. 이 모델을 이용하여 그래프의 클러스트링에 큰 효과를 보았다는 논문을 기반으로 Graph2vec 모델을 활용하였습니다. 

 

<임베딩 후 군집분석을 통해 3 그룹으로 나뉜 동선들>

 

 그렇게 그룹화가 된 동선들 중에서 평균 관광객 수가 가장 높은 그룹을 선정합니다. 선정된 그룹과 저희가 앞서 계산한 동선 유사도를 조합하여 가장 인기 있는 동선을 찾아낼 수 있습니다.
(자세한 PPI 산출식은 블로그 아래 링크로 신청하시면 발표 자료 및 논문에서 확인 가능합니다.)

<순천시 PPI 지수 결과 예시>

 

연계성이 높은 동선 (동선 유사도)와 수요가 높은 동선 (인기 동선 선정) 과정에 거쳐 산출한 PPI는 5점 만점으로 나타낼 수 있습니다. 5점일수록 순천과 연계할 수 있는 관광코스로 제격이라 볼 수 있는데요! 위의 표에서 순천시를 본다면, 순천시는 여수시, 광양, 고흥이 가장 연계성이 좋은 관광 코스로 나타났습니다. 1점대를 얻은 진주, 하동은 여수, 광양에 비해 관광 코스로 연계하기 다소 어려움이 있을 것이라는 것을 수치를 통해 이해할 수 있습니다. 

 

Where?

 

그렇다면 일련의 과정을 거쳐 나온 결과를 자세히 소개해 드리려고 합니다. 보여드릴 장소는 부산광역시와 여수시입니다! 

먼저 ‘여름 바다’하면 떠오르는 대표 관광지는 역시, 부산이지 않을까요?  😎

 

부산의 경우, 거제, 김해, 울산을 아우르는 관광 코스가 가장 인기 있는 코스로 나타났습니다.  특히 부산에서 통영, 그리고 거제시로 관광하는 코스와 부산에서 김해시로 가는 코스가 가장 인기 있었는데요! 여름 하면 부산 갈매기가 떠오르는 것처럼, 분석 결과에서도 여름에 가장 수요가 높은 것으로 나타났네요. 또한 10대, 30대 남성 관광객분들이라면 이 코스로 여행해보시면 좋을 것 같습니다. 

주요 관광 코스 외에도 두 번째로 인기 있는 지역들은 양산, 창원, 통영, 밀양 순으로 나타났습니다. 또한 동선 데이터가 방향성이 있기 때문에 네트워크 그래프에서도 부산에서 출발하는 동선이 인기 있는 동선들로 확인되네요. 부산에서 김해, 울산 등 다른 지역 탐방에는 대중교통 및 여러 환경에 의해 부산에서 출발하는 수요가 높은 것으로 보입니다.

 

 

여수 밤바다. 사실 밤바다 중에 가장 유명해진 밤바다는 여수 밤바다가 아닐까 싶습니다.
하지만 여수 밤바다와 함께 다른 유명 지역도 같이 관광한다면 그게 바로 일석이조, 일석삼조가 되지 않을까 싶은데요!

여수시의 경우 광주에서 여수시를 거쳐 순천시를 가는 코스와 여수시에서 순천시를 가는 코스가 가장 인기 있는 코스로 나타났습니다.  3지역과 2지역 모두 여수시는 순천시와 떼어놓을 수 없는 관광 코스라는 점에서 의미가 있는 것 같네요. 여수시에 들렸다가 순천 갈대밭 축제 (순천만 갈대축제)를 보러 가시는 관광객이 많을 거라 예측됩니다. 

여수 바다와 순천의 갈대밭이 인기 코스로 보이듯, 여수는 봄과 가을에 가장 인기 있는 관광지로 나타났습니다. 또한 남성, 여성, 20대 , 50대 등 부산과는 달리 다양한 성별, 연령대를 아우를 수 있는 관광 코스로 보여집니다.

 

 

 여수와 연계될 수 있는 관광 코스로 순천뿐만 아니라 남해, 광양, 고흥 등 인기 코스로 보이는 곳들이 다수 존재하여 여수시를 방문하실 때 위에 나열된 지역들도 고려해본다면 최고의 여행이 될 것 같습니다. 또한 여수시의 경우 여수에서 출발하는 코스가 인기가 많은 것으로 나타나, 여수시를 방문하고 남해 광양 등 주변 도시를 탐방하시는 것이 연계성이 가장 좋을 것으로 보입니다. 

 

이렇게 통신 데이터인 동선 데이터를 기반하여 인공지능이 선정한 가장 인기있는 관광 코스를 살펴봤습니다. 관광객의 발자취 데이터를 통해 인공지능을 활용한 찐 관광 코스를 알아보는 시간! 어떠셨나요?

이번 여행 계획을 세우고 계시는 분들에게 좋은 정보가 되었으면 하네요~

 

이상 SPH 데이터 컨설팅 팀이었습니다! 

 

 


 

연구 자료 및 발표 자료가 궁금하시다면?

데이터 컨설팅팀 발표 자료 및 논문 자료 다운로드:  인공지능 기반 관광코스 추천 

 

SPH는 Google Maps, SuperMap, Maxar Technologies 등 다양한 케이스에 존재하는 다양한 제품군을 보유하고있는 고객의 사례에 꼭 맞는  무료 세미나 및 인적 컨설팅을 제공하고 있습니다. 각 케이스에 더욱 자세한 이야기를 나누고 싶으시다면,  여기 에서 문의 주시길 바라며, SPH에서 발행하는  GIS / 로케이션인텔리전스 관련 최신 소식 을 받아보고 싶으신 분들은  페이스북 페이지  또는  뉴스레터 를 구독 해 주시길 바랍니다. 감사합니다.

최우수상 받은 데이터 컨설팅팀, 숨은 뒷이야기!

서울시 빅데이터 캠퍼스 공모전 최우수상 수상!

참여부터 수상까지의 숨은 뒷이야기

 

  • 소개
  • 공모전 주제 선정 
  • 공모전 기획  
  • 데이터 수집 및 ETL 
  • 데이터 분석
  • 데이터 분석 결과 – 어린이 보호 구역으로 지정되어야 하는 3곳!  
  • 잠깐! 토막 소식
  • 아쉬운 점 및 챌린지 
  • 수상 결과에 대한 의견 및 소회

 

  • 소개

서울시 빅데이터 컨퍼런스에서 김도환 전임 연구원의 발표 모습

서울시 빅데이터 컨퍼런스에서 김도환 전임 연구원의 발표 모습

안녕하세요! SPH 데이터 컨설팅팀이 이번 2020 서울시 빅데이터 캠퍼스에서 주최한 빅데이터 공모전에서 최우수상을 수상하였습니다. 이번 공모전은 주제 선정에서부터 수상까지 의미있고 재미있었던 부분들이 많았는데요. 공모전 주제 선정에서부터 수상까지 SPH 데이터 컨설팅팀의 전문적인 분석 과정과 노력등을 공유해 드리려고 합니다.      

 

  • 공모전 주제 선정

최종으로 선정된 주제: 新 어린이 보호구역 제안 

서울시 빅데이터 캠퍼스에서 주최한 공모전은 예전부터 관심이 많이 있던 공모전입니다. 다른 주최사와 달리 사용 가능한 데이터, 즉 빅데이터를 기반으로 분석을 자유롭게 할 수 있다는 점에서 꼭 참여하고 싶었습니다. 주제 선정에 있어서는 꽤나 고심을 많이 했는데, 그 이유는 SPH 데이터 컨설팅팀은 사회 전반에 걸쳐 여러 주제에 관심이 많기 때문입니다. 예를 들어, ‘흡연 구역 설정’, ‘최적의 따릉이 구역’처럼 사회적으로 충분히 도움이되는 분석 결과를 내놓는다면 좋겠다라는 생각을 하고 있었습니다. 또한 양질의 데이터의 유무가 중요하다고 생각하는데요. 분석하고자 하는 주제가 굉장히 좋아도 데이터가 충분하지 않다면 분석 결과의 신뢰도에도 영향을 미치기 때문입니다.

저희는 어린이 교통사고에 관한 뉴스들을 다수 접하면서 ‘어린이 보호구역’에 대해 관심을 갖게 되었고 관련 데이터가 서울시 및 여러 기관에서 제공하는 것을 확인한 뒤에 최종으로 이 주제를 선정하게 되었습니다. 또한 현재 어린이 보호구역은 어떠한 특징과 법안이 있는 지 살펴 보았는데, 생각보다 허점이 있다는 것을 알게 되면서 데이터 분석 및 기획을 시작하게 되었습니다. 

 

  • 공모전 기획 

프로젝트 소개부터 결과까지의 과정 

 

빅데이터를 이용한 분석도 중요하지만 데이터 분석가로서 중요한 역량 중 하나인 상호 커뮤니케이션, 즉 설득력있는 기획을 어떻게 진행할 것인지에 대해 고민을 했습니다. 아무리 분석을 잘해도 사람들이 이해하기 쉽지 않다면 분석한 결과의 가치가 많이 떨어지기 때문에 분석에 ‘스토리’를 담아 PPT에 녹여냈습니다. 

이 주제를 선정한 배경, 사회적 상황, 어린이 보호구역의 현재 법률적 효력 등 사회적 이슈와 現 어린이 보호구역 기준의 변화에 대한 긍정적인 결과 순으로 PPT에 담아내려 노력했습니다. 또한 ‘당위성’이 중요한 부분이라 생각하였습니다. 저희가 특정 데이터를 수집 및 이용한 이유, 데이터 분석에서 머신 러닝 모델을 이용한 이유와 결과물에 대한 심도있는 해석까지 포함한 내용이 들어있습니다 (아래 발표영상 링크 참고). 빅데이터 분석으로 끝나는 게 아닌, 적재적소에 이 분석 결과가 사용되길 바라는 마음을 담아내어 기획을 했습니다.  

   

  • 데이터 수집 및 ETL

어린이 교통사고 현황 [출처: TASS 교통사고 분석 시스템] 

어린이 교통사고 데이터는 TASS에서 지난 6년 간의 데이터를 수집할 수 있었기 때문에, 꽤 양질의 데이터를 모을 수 있었습니다. 또한 서울시 빅데이터에서 제공하는 SKT 유동인구 데이터를 통해 10대 유동인구의 이동 동선을 확인할 수 있었으며 초등학교 및 유치원, 그리고 어린이 보호구역 현황은 서울시 열린 데이터 광장(https://data.seoul.go.kr)에서 수집했습니다. 

‘데이터 분석의 꽃은 전처리’라는 말이 있을 정도로 저희 SPH 데이터 컨설팅팀은 데이터 전처리에 많은 노력을 기울였습니다. 어떠한 데이터를 추출하고 필요하지 않는 데이터는 어떻게 보관할 것이며, 중요한 데이터 중 어느 변수를 원 핫 인코딩 처리 할 것인지, 그리고 결측치 처리 및 Outlier 처리에 관련하여 많은 노력을 들였습니다.  

 

 

  • 데이터 분석

데이터 수집부터 분석 결과까지의 과정을 시각화한 차트

지도 학습 및 비지도 학습 등 여러 분석 방법들이 있는데 저희는 ‘어린이 교통사고 건수’라는 Target 값이 있었기 때문에 지도 학습으로 진행하였습니다. 또한 여러 전문적인 머신러닝 회귀 모델들이 많았는 데, 이번 분석에서는 머신러닝의 모델을 이용했습니다. 모델 중 최적 모델 선택에 있어서는 MAE (Mean Absolute Error)을 기준으로 가장 낮은 오류 값을 가진 모델이 성능이 좋은 모델이라 판단하였습니다. 저희의 분석 결과로는 10개의 모델 중 Random Forest Regressor가 가장 최적의 모델로 선정되었습니다.    

Random Forest Regressor는 앙상블 회귀 모델로써 MAE가 0.08의 가장 낮은 오차값을 가지고 있습니다. 이 모델이 선정한 중요 변수와 Pearson Correlation에서 중요 변수로 제시된 변수들은 ‘10대 유동인구’,’주변 유치원 수’, ‘주변 초등학교 수’입니다.  (아래 사진 참고)

 

머신 러닝 모델이 선택한 중요 변수들 및 필터링 과정

 

저희 공모전 주제는 데이터 분석 관점이 두 가지로 나뉩니다. ‘현황 분석’과 ‘예측 분석’. 현황 분석과 예측 분석으로 나뉜 이유는 1.현재 문제점을 조금 더 정밀히 파악하고 어린이 보호구역 기준의 미흡함에 대해 경각심을 주기 위함2.현재는 알 수 없지만 예측을 통해 머신 러닝 분석 결과에 기반하여 미래 사고 위험도를 알려주기 위함이었습니다. 

현황 분석은 데이터 분석을 통해 알게된 중요 변수들을 통해 필터링을 하여 어린이 보호구역으로 설정되진 않았지만 설정되어야 하는 곳들을 나열했습니다. 중요 변수들은 ‘초등학교 수’, ‘유치원 수’, ‘10대 유동인구 수’였는데 이 값들에 특정 기준치 이상일 경우 현재 어린이 보호구역으로 선정되어야 하는 구역을 나열했습니다. 특정 기준치는 ‘10대 유동인구 수’는 상위 10%값, 유치원 수는 1곳 이상, 초등학교 수는 2곳 이상으로 이 모든 기준치에 부합되는 장소인데 어린이 보호구역으로 선정되지 않았으며 사고 수가 5건 이상인 경우인 장소는 로드맵을 통해 실제 어린이 보호구역으로 어느 장소까지 보호되는지 살펴보았습니다. 

예측 분석은 말 그대로 머신러닝 알고리즘이 예측한 사고 건수입니다. 예를 들어 사고가 1건이 일어난 장소들을 Test Set(216건)으로 선정하여 현황 분석때 이용한 머신러닝 모델을 통해 이 장소들이 향 후, 얼마나 사고 건수가 상승하는 지 살펴봤습니다. 그 중 43곳은 사고 발생 건수가 2건 이상이었으며 이 점을 토대로 어린이 교통 사고가 일어날 확률이 높으니 지정이 반드시 필요하다라는 점을 피력했습니다. 

 

  • 데이터 분석 결과 – 어린이 보호구역으로 지정되어야 하는 3곳!

빅데이터 및 AI를 통해 알아낸 어린이 보호 구역 지정으로 시급한 TOP3 지역

데이터 분석 결과 중 현황 분석을 통한 결과를 보여드리자면, 가장 어린이 보호구역으로 지정되어야 되는 시급한 곳은 1. 석촌 호수로 잠실 새내역 사거리 2. 내발산동 강서로 47길 3. 구로구 개봉동 179-46으로 나타났습니다. 어린이 교통사고가 5건 이상 발생되며 초등학교 및 유치원이 주변에 위치하며 10대 유동인구가 상위 10% 이상 존재하는 장소임에도 불구하고 어린이 보호구역으로 지정되지 않은 곳입니다.

어린이 보호 구역 지정으로 시급한 TOP3 지역의 실제 사진 및 사고 현황

석촌 호수로 잠실 새내역 사거리인 경우는 반경 400m 지점까지 어린이 보호구역이 없었으며, 구로구 개봉동 179-46과 내발산동 강서로 47길 3은 어린이 보호구역이 존재하나 그 주변에서 일어나는 어린이 교통사고가 존재하는 것으로 보입니다.  현재 법령으로는 볼 수 없지만 빅데이터 및 AI를 통해서 찾을 수 있는 ‘사각 지대’입니다.  (자세한 분석 내용은 아래 자료 공유를 참고해주세요)

 

  • 잠깐! 토막 소식 

어린이 보호구역 지정에 대한 염원이 서울시에 닿았는지, 최근 잠실 학원 사거리에 기존에 없던 어린이 보호구역 및 30km 속도 제한 과속 카메라가 설치되었습니다. 저희 데이터 분석 결과였던 어린이 보호 필수 구역 1위로 선정된 곳에 CCTV 설치 및 어린이 보호 구역으로 지정이 되어 이 근방의 어린이 교통사고 예방에 긍정적인 변화가 있을 것으로 예상됩니다! 아래 사진은 SPH 조영만 차장님께서 어린이 보호구역 지정에 대한 기쁜 마음을 담아 공유해주신 사진입니다.

최근 잠실 학원 사거리에 설치된 어린이 보호구역 및 과속 카메라 모습

 

  • 아쉬운 점 및 챌린지 

서울시 빅데이터 캠퍼스에 참여하게 되면서 느낀 점 중 아쉬웠던 부분은 데이터의 불균형입니다. 예를 들면 서울시 빅데이터 캠퍼스이지만 사실상 대한민국을 대표하는 빅데이터 캠퍼스이기 때문에 분석 주제가 서울시로 국한되지 않습니다. 하지만 서울시 외의 데이터들은 잘 갖추어있지 않거나 양질의 데이터가 많지 않다보니 자연스럽게 분석 타겟이 서울 시내로 맞춰지는 게 조금 아쉬운 부분이었습니다. 대한민국 내의 행정에 관련된 데이터들이 한 곳에 잘 정리되어 있다면 소외된 지역에 관한 효율적인 빅데이터 분석이 가능하지 않을 까 싶습니다.   

 

  •   수상 결과에 대한 의견 및 소회

2020년 저희 데이터 컨설팅팀이 사회 이슈에 대해 열심히 분석하고 관심을 갖게 된 것에 대한 ‘선물’이라고 생각합니다. 다른 공모전 팀들도 분명히 필요한 뜻깊은 분석을 하였으며 공모전 참여만으로도 다른 팀들의 분석 인사이트를 보면서 배울 점이 많았습니다. 서울시 빅데이터 캠퍼스 사옥에도 방문해보고 공공 데이터가 어떻게 관리되는 지 배우는 시간이었습니다. 또한 저희 뿐만 아니라 많은 참가자들이 빅데이터 분석에 크게 관심을 갖는 것을 볼 때, 미래에는 정말 빅데이터를 통해 과거보다 더 도움이되는 정책들이 나오지 않을 까 기대됩니다. 저희 SPH 데이터 컨설팅팀은 사회적 이슈 및 여러 공공 사안을 비롯하여 흥미로운 주제들로 인사이트있는 분석을 가지고서 다시 찾아뵙겠습니다. 감사합니다.

  

서울시 빅데이터 캠퍼스 최우수상 시상식 

Blog written by 이소린 전임 연구원

 

김도환 전임 연구원 발표 영상 및 분석 자료 다운로드: 


SPH는 CARTO, Google Maps, SuperMap 등 다양한 케이스에 적용될 수 있는 다채로운 제품군을 보유하고 있으며 고객의 사례에 꼭 맞는 무료 세미나 및 개별 컨설팅을 제공하고 있습니다. 각 케이스에 맞춰 더욱 자세한 이야기를 나누고 싶으시다면 여기에서 문의 주시길 바라며, SPH에서 발행하는 GIS/로케이션 인텔리전스 관련 최신 소식을 받아보고 싶으신 분들은 페이스북 페이지 또는 뉴스레터를 구독해 주시길 바랍니다. 감사합니다.

여의도 직장인들을 위한 찐맛집은?

여의도 직장인들을 위한 찐 맛집은?

(1만 5천 개 이상의 맛집 리뷰 데이터 분석!)

“점심 뭐 먹지?”

 

직장인들의 중심지, 여의도에서 맛집을 찾는 것은 회사원들에게는 중대한 결정 사안 중 하나입니다. 대부분 입소문으로 식당을 가거나 인터넷 속 ‘후기’들로 소중한 점심 메뉴를 결정짓죠. 인터넷에는 식당 리뷰를 볼 수 있는 플랫폼이 매우 많지만, 업무로 바쁜 직장인들에게 일일이 모든 리뷰를 찾아보는 건 어려운 일입니다. 더군다나, 힘겹게 찾아낸 식당이 맛집이 아닐 경우 허탈감이 이루 말할 수가 없습니다. 누구나 한 번쯤은 블로그 리뷰를 보고 갔다가 실망하고 돌아와 봤을 거라 생각합니다. 

 

‘수많은 맛집 찾기 플랫폼에서 과연 어떤 정보가 믿을 만한가? 진짜 맛집을 찾을 수 있게 알려주는 정직한 곳이 없을까?‘ 

 

이번 포스트는 이와 같은 문제에 대한 저희 SPH 데이터 컨설팅팀에서 찾아낸 나름의 해답입니다. 맛집은 주관적인 요소를 상당히 많이 포함하고 있기에, 저희의 솔루션이 범용적인 모범 답안일 수는 없음을 말씀드리고 싶습니다.

우선 맛집과 관련된 모든 포털 사이트의 리뷰 정보를 취합하고 분석하는 과정을 보여드리려 합니다. 분석 과정에서 저희는 3가지 관점을 기준으로 삼고 각 기준별로 맛집 순위를 매겼습니다. 이러한 배경에는 앞서 말씀드렸듯이, 맛집에 대한 기준은 주관적이기에 1가지 관점만으로는 순위를 매기기가 어렵다는 데 있습니다. 저희 SPH 데이터 컨설팅팀은 ‘맛집 탐방러’에게 보다 신뢰할 만한 정보를 제공함으로써, 작게나마 여의도에서 식사하시는 분들께 소소한 행복을 전해드리고 싶습니다.

 

0. 맛집 리스트 선정

처음부터 전국 맛집을 모두 분석하기엔 음식점 개수가 너무나 많았습니다. 천 리 길도 한 걸음부터라고, 전국지점을 분석하기에 앞서 작은 한 지역부터 분석해보기로 했습니다. 이를위해, 저희가 근무하는 곳인 여의도 지역 내의 일부 맛집 데이터만을 분석해보고, 추후 (반응이 좋을 경우) 확장하기로 했습니다. 일종의 pilot study 개념으로 진행하였지만, 이번 분석을 통해 데이터 수집에서부터 분석까지 전체적인 파이프라인을 구축하였습니다.

여의도 찐 맛집을 조사하기에 앞서, 여의도 맛집 리스트 목록이 필요했습니다. 망고플레이트는 구글에 ‘맛집 검색’으로 검색하였을 경우 1순위로 등장하는 사이트입니다. 다이닝코드와 식신, 메뉴판 닷컴 등도 있지만 망고플레이트의 영향력이 아직 제일 높다고 생각하였기에 망고플레이트를 기준으로 맛집 리스트를 선정했습니다. 

망고플레이트에서 ‘여의도 맛집’이라고 검색할 경우 총 44개의 장소가 나옵니다. 한식, 일식, 양식에서부터 카페, 뷔페까지 다양한 업종의 장소들이죠.

이 44개 맛집의 주요 포털 사이트 5곳의 후기들을 취합하여 ‘진짜 맛집’을 보여드리려고 합니다.

 

1.리뷰 지수 

  리뷰란 가보지 못한 곳을 먼저 개척한 사람들에게 듣는 스토리이기도 합니다. 식당을 먼저 가본 고객들이 써 내려간 솔직 담백한 후기들을 보고, 우리는 해당 식당을 방문할지 말지를 한 번 더 고민하게 됩니다. 일부 광고성 리뷰를 제외하고, 대체로 리뷰가 긍정적인 식당이라면 ‘무난하게’ 점심을 즐길 수 있습니다. 리뷰를 통해 얼마나 맛있는지에 대한 점수를 매길 수 있습니다.

단, 이때 사용되어야 할 리뷰는 신뢰할만한 데이터여야겠죠. 리뷰 데이터가 신뢰성을 가지기 위해선, 광고성 리뷰나 의도적인 영업 방해 의도로 작성된 리뷰를 가려낼 수 있어야 합니다. 저희 SPH 컴설팅 팀에서는 리뷰 데이터로부터 신뢰성있는 정보를 추출하기 위해 평가하는 사람의 패턴과 점수 분포, 개수 분포 등을 반영하였습니다. 이를 바탕으로 텍스트 데이터에 대한 감성분석을 진행하고, 리뷰와 관련된 여러 메타 데이터와 조합하여 리뷰 지수를 산출했습니다.

 

데이터 분석 전문가가 분석한 단순하지만 정교한 맛집 리뷰 지수!

구글, 네이버, 카카오 등 식당 후기를 찾을 수 있는 플랫폼은 무궁무진합니다. 저희는 주요 포털사이트 5곳에서 최근 6개월 동안 고객들이 남긴 개별 리뷰 점수들을 총 취합하였고, 앞서 소개해드린 과정으로 저희 나름의 리뷰 지수를 산출했습니다. 리뷰 지수를 통해 산출된 결과는 카테고리별로 위 그래프와 같이 나타낼 수 있습니다. 한식에서는 진주집이, 일식에서는 아루히, 양식에선 테이스팅룸, 중식에선 라무진, 카페에서 그레이에스프레소가 높은 점수를 차지했습니다. 

 

리뷰지수 산출에 쓰인 딥러닝 기반 감성 분석

리뷰지수에는 리뷰의 점수 분포나 리뷰를 단 사용자의 패턴뿐만 아니라 텍스트 자체의 *감성 분석 결과도 포함되어 있습니다. 단순히 포털 사이트별 리뷰 점수를 취합한 수치가 아닌, 딥러닝을 통해 해당 식당에서 올라온 모든 후기 글의 감성 점수를 취합하였습니다. 또한 각 플랫폼에 나타난 식당 전체 평균 점수에서도 상대적으로 긍정의 비율이 높은 식당에는 가중치를 더 많이 주는 방법을 통해 차별화를 두었습니다.

 

 

이때 쓰인 감성 분석을 간략히 표현한다면 위 그림처럼 나타낼 수 있습니다.  우선 리뷰 텍스트 데이터내 단어들을 벡터로 임베딩 시켜줍니다. 임베딩을 통해 생성된 벡터를 딥러닝 모델의 입력값으로 활용합니다. 단어 임베딩 기법을 사용하였기에 단어들은 주변 문맥 정보를 반영하고, 딥러닝 모델로는 양방향 LSTM을 사용하여 언어 문법 구조의 복잡한 측면도 잡아낼 수 있습니다. 그 결과 적절한 확률값을 예측할 수 있고 이를 이용해 감성 분석을 시행하였습니다.

*감성 분석이란 문장을 형태소 단위로 분리하여 문장의 긍정 및 부정의 비율을 예측하는 기법입니다. 문장의 마지막 단어들에 높은 가중치를 매기는 LSTM 모델이 아닌 초반에 나온 단어들도 가중치를 높게 두어 예측하는 모델인 양방향 LSTM을 사용했습니다. 또한 15만 여개의 네이버 리뷰 데이터로 학습시켜 예측 정확도를 높였습니다.  

참고 문헌) Bidirectional Recurrent Neural Networks, Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition

 

 

2. 리뷰 트렌드

“여기가 인기 식당이라는데 난 잘 모르겠는걸?”

오래전부터 오픈한 식당들은 당연히 리뷰 수도 많기에, 리뷰 데이터에서는 신규 식당보다 유리한 위치를 선점할 수 있습니다. 또한 예전엔 맛있었지만, 최근엔 맛이 변하여 예전만 못하거나 혹은 예전보다 훨씬 업그레이드된 식당들도 있을 수 있습니다. SPH 데이터 컨설팅팀에서는 여의도에서 ‘최근’에 핫한 식당들과 다소 인기가 떨어진 식당들을 보여드리려고 합니다.

최근 3개월간 식당을 다녀간 고객들의 후기가 좋아졌거나 나빠졌다는 것을 판가름할 수 있는 플랫폼은 지금까지 없었습니다. SPH 데이터 컨설팅팀에서는 최근 3개월간 리뷰의 평균 변화량을 다각적으로 분석하였습니다. 한식에선 정인멱옥, 일식에선 카레오, 양식에선 그리너리 샐러드, 중식의 경우 서궁, 카페는 아이엠베이글과 패트릭스와플이 최근 3개월간 사랑을 받고 있는 곳이네요. 그에 비해 진주집, 아루히, 테이스트링, 오헨과 뷔페 업종은 이전보다 고객의 발길이 뜸해졌습니다.

 

리뷰 트렌드에서 높은 수치는 해당 식당이 기존에 방문하던 고객 수와 비교했을 때, 더 많은 고객이 방문했거나, 평가가 이전보다 상대적으로 좋아졌다는 것을 의미합니다. 반대로 특정 식당의 수치가 낮을 경우, 해당 식당은 이전보다 고객의 방문이 뜸하거나 종전의 평가에 비해 최근 고객들의 평가가 낮아진 곳을 의미합니다.

가령 특정 식당의 금월 리뷰 수가 100개라고 합시다. 만약 전월 리뷰 수가 10개라면 해당 식당의 트렌드 지수는 높은 값을 띌 가능성이 높습니다. 반면, 전월 리뷰 수가 1000개였다면 오히려 감소하는 추세를 나타내기에 트렌드 지수는 낮은 수치를 기록할 것입니다. 물론 점수도 같은 맥락으로 파악해봐야 정확하게 알 수 있겠지만요. 리뷰 트렌드를 기준으로 최근에 뜨고 있는 식당을 방문해보는 것도 좋을 것 같습니다. 

 

출처: https://www.chosun.com/site/data/html_dir/2020/08/21/2020082100322.html

다만, 리뷰 트랜드의 경우 최근 코로나 바이러스의 영향이 반영될 수밖에 없습니다. 가령, 공간이 협소하거나, 다수의 사람들이 한 곳에 모일 수 밖에 없는 뷔페 같은 경우가 좋은 예입니다. 이런 곳의 경우 코로나의 여파로 인해 입은 피해가 위 수치에도 드러날 수 있습니다. 앞선 그래프에서도 보실 수 있듯이, 뷔페의 경우 트랜드가 음의 점수를 나타내고 있습니다. 또한, 일식에서 아루히는 리뷰지수와는 반대로 상당히 낮은 리뷰 트랜드 지수를 보입니다. 이 또한 코로나의 영향이라고 추측할 수 있습니다. 추측건대, 아래 사진에서 보듯이 아루히는 사람 사이의 공간이 넓지 않지만 항시 분비는 장소이기에, 최근 고객들에게는 다소 위험한 장소로 인식되었을 수도 있습니다.

 

아루히 네이버예약 페이지 사진

 

3. 가성비 순위  

 

후기 만큼 중요하게 생각하는 부분은 ‘가격’입니다. 여의도 직장인들에게 점심값은 ‘소소익선’입니다. 하지만 열심히 일한 직장인들의 소중한 한 끼기 때문에, 저희는 맛도 잡고 가격도 잡은 식당을 카테고리별로 소개해 드리려고 합니다. 가성비 순위를 보여드리기 전, 데이터를 통해 어떻게 가성비 순위를 산출하게 되었는지에 대한 과정을 보여드리겠습니다. 

 

식당의 가성비는 맛 대비 가격의 저렴함과 비쌈을 의미합니다. 개개인의 차이에 따라 맛의 평가가 달라지지만, SPH 데이터 컨설팅팀에서는 대중의 입맛을 대변하는 ‘리뷰 지수’, 해당 업종의 평균가격, 해당 식당의 평균 가격을 조합하여 새로운 가성비를 정의하고 이에 따른 순위 산출했습니다. 업종별로 가격대의 기준이 다를 수 있음을 인지하여 업종별 가격 차이를 중요 변수로 고려하였습니다. 

 

가성비 산출 프로세스에 따른 가성비 순위 결과  

 

가성비 1위는 각 카테고리별로 진주집, 카레오, 바스버거, 서궁, 그레이에스프레소입니다. 카레오는 일식이지만 주메뉴가 스시가 아니어서 가격이 상대적으로 낮게 측정된 면이 있습니다. 이 점을 감안하면 일식에선, 스시집인 아루히가 가성비가 매우 좋은 것을 확인할 수 있습니다.

 

 

4. 지도로 한 번에 보는 여의도 베스트 식당 현황

앞서 분석한 여의도 맛집의 리뷰 지수, 리뷰 트렌드, 가성비 순위를 구글 my maps에 나타내어 보았습니다. 식당 아이콘을 클릭하시면 식당별 점수와 순위 정보가 나옵니다.


5. 후기

 


Written and Analyzed by 

SPH 데이터 컨설팅 관련 컨설팅 문의는 여기를 클릭해주시기 바랍니다. 

머신러닝 지도학습을 통해서 꼽아본 최적의 스타벅스 DT 장소!?

2부-2: 머신러닝을 통한 스타벅스 DT 최적의 입지 점수는?

인문사회 데이터기반 스타벅스 DT 입지조건 분석(featuring by AI)

지금까지 최적의 입지 변수를 가진 스타벅스 DT 장소들을 찾아보았습니다. 제 2의 최적의 스타벅스 DT점이 되기 위해 ‘어디에’ 스타벅스 DT를 입점시키는 게 좋을 지 찾는 과정의 마지막 단계에 이르렀습니다.  

저희 SPH 데이터 컨설팅팀에서는 다양한 데이터로부터 학습과정에 필요한 변수들을 추출하고, 이를 토대로 지도 학습 시행했습니다. 학습 결과 나온 모델로 ‘입지 점수’를 예측할 수 있습니다. 지도 학습 결과 산출된 ‘입지 점수’는 해당 지점이 스타벅스 DT 입점에 얼마나 최적화된 장소인지를 수치화한 결과 입니다.

A. [머신러닝 지도 학습]이란? 

  머신러닝 지도 학습은 비지도 학습과 달리 명확하게 학습해야 할 정답(혹은 target, 종속변수)이 있습니다. 지도 학습에서는 유동인구, 아파트 세대수, 대기업 정보 등의 feature 데이터(독립변수) 들만 주어지는 게 아닌, 해당 데이터의 정답이 학습시 함께 주어집니다. 이렇게 학습된 모델은 feature를 입력으로 받은뒤, 입지 점수를 출력하는 함수라고 할 수 있습니다. 

  모델의 성능을 좌우하는 건 양질의 데이터이므로, feature 뿐만 아니라 target 도 매우 중요합니다. 이런 점에서 스타벅스 DT 입지 점수와 가장 관련 깊은 target은 스타벅스 DT의 매출정보가 아닐까 싶습니다.

* 하지만 매출 데이터를 얻을 방법이 없었기에, 저희 나름의 알고리즘을 바탕으로 입지 점수를 선정하고 이를 target으로 하여 모델링을 진행했습니다. 

B. 분류화 & 그룹별 머신러닝 기반 분석

SPH 데이터 컨설팅팀은 정확한 머신러닝 알고리즘을 구축하기 위해 스타벅스 DT점들을 총 4분류로 나누었습니다. 전체 스타벅스 DT점들을 하나의 알고리즘으로 분석하는 것보다, 분류 후에 각 그룹별로 예측한 입지 점수가 더 높은 정확도를 나타내는 것을 확인하였습니다. 그 과정과 결과를 설명드리려 합니다.  

관광지 그룹으로 분류된 스타벅스 DT점들은 강변, 드라이브 코스, 관광지 근처인 특징들을 가진 DT점들을 분류한 그룹입니다. 또한 실질적으로 ‘유명 관광지’ 근처가 아니더라도 리버사이드팔당DT점과 같이 휴식을 목적으로 찾아오는 지점들을 간추려내었습니다. 이 지점들이 가지는 특징과 입지 변수를 토대로 스타벅스 DT의 입지와 관련하여 예측 분석을 해보았습니다. 예측 분석 후 가장 크게 영향을 미치는 변수들 TOP10을 소개드리려고 합니다.    

관광 그룹으로 분류된 스타벅스 리버사이드 팔당점 DTR 전경

1) 머신러닝 모델링 과정 및 결과

– 스타벅스 DT점의 Target 변수?

  지도학습을 통해 모델이 완성된다면, 이 모델을 통해 스타벅스 DT 입점 전에 내가 선택한 장소가 얼마만큼의 매출을 낼 수 있는 지를 예측할 수 있습니다.

  앞서 말씀드린바와 같이, 머신러닝 지도학습에서는 target 변수가 중요합니다. Target 변수가 무엇일까요? 스타벅스 DT 입지 분석에서쓰인 target 변수는 스타벅스 DT를 입점하기에 적합한 장소인지 아닌지를 구분하기 위해서 쓰이는 변수입니다. 좋은 입점 장소를 선택하는 데 있어서 중요한 변수는 각 DT점의 ‘매출’ 및 ‘토지의 가치’등이 있습니다. 

여기서 저희가 결정하기 위해 시도했던 변수들은 1.감성 지수가 포함된 Label, 2. 6개월 네이버 영수증 개수, 3. 공시지가 3년치 상승률, 4. 공시지가 3년치 평균입니다. 네 변수 중 다른 독립 변수들과 상관 관계 수치가 가장 높고 많은 독립 변수가 포함된 변수를 target 변수로 선택했습니다.

여기서 저희가 관광지에 스타벅스DT를 입점하기에 적합한 장소인지 아닌지를 선택, 구분하기 위한 값으로 선택한 중요 변수는 ‘공시지가 3년치 평균’입니다. 즉 53개의 영향을 미치는 입지 변수들이 평균 66% 정도 ‘공시지가 3년치 평균’과 상관관계가 있다고 할 수 있습니다. 

입점 예정인 장소를 머신러닝을 통해 예측하였을 때 공시지가 3년치 평균이 높게 나온다면 그 장소는 여러 독립 변수에 근거하여, 스타벅스DT점으로 높은 매출을 전망할 수 있을 것입니다.

2) 관광지에서 스타벅스 DT 매출 상승을 위한 중요 변수는?

머신러닝 지도 학습 결과, 왼쪽 Y축의 값은 관광지로 분류된 스타벅스DT점들이 가지는 중요 변수들을 나타내었습니다. X축은 입점 장소의 공시지가 상승, 하락에 어떠한 영향을 가지는 지, 변수의 중요도를 뜻합니다. (중요 변수들 중 10개 발췌)

예를 들어, ‘수요일’ 유동인구는 관광지에서 스타벅스 DT를 입점하는 데 영향을 미치는 변수들 중 가장 중요한 변수라고 볼 수 있습니다. 특히, 수요일날 유동 인구 수가 많다면 그 관광지로 분류된 스타벅스DT점은 매출이 높을 가능성이 큽니다. 

반대로, 수 km내 주요기업 수는 관광지에 스타벅스DT를 입점하기에는 영향력이 매우 적은 결과값을 가진다고 볼 수있습니다. 

이러한 변수의 부정, 긍정적인 관계와 중요도의 높고 낮음을 통해 관광지에 스타벅스DT를 입점하는 데 있어서 입점 장소의 변수값의 중요성을 알 수 있습니다.

**아래는 이러한 머신러닝 알고리즘을 구축하는 과정에 산출한 정확도와 모델 선택 차트입니다. 첫번째 그래프를 통해서 모델링 오차가 mae(평균 절대값 오차) 기준 0.04 정도로 예측을 잘 하는 알고리즘이란 것을 확인할 수 있습니다. 또한 두번째 차트에서 보이는 것처럼, 최적의 성능을 산출하기 위해 10가지 이상의 모델을 학습시키고 이중, 가장 최적화된 StepwiseLinear 모델을 선택했습니다.

**아래는 머신러닝 모델의 잔차의 분포를 나타냅니다. 잔차의 분포가 정규분포를 따름을 확인할 수 있습니다.

 

IC 근처로 분리된 스타벅스 DT점들은 대략 80여개로, IC 진입로에 위치하여 있거나 고속도로 근처 및 지리적으로 아파트 쪽을 입구로 향하지 않고 고속도로쪽으로 출입구가 향한 지점들입니다. 또한 정확히 IC근처가 아닐지라도 이 지점들이 가지는 특징들은 주변 아파트 및 거주민들을 위한 고객층이 아닌, 고속도로로 진입하여 다른 지역으로 이동하는 고객층을 위해 위치한 스타벅스 DT점입니다.  

IC근처 그룹으로 분리된 스타벅스 수원IC DT 전경

1) 머신러닝 모델링 과정 및 결과

위의 관광지로 분류된 스타벅스DT 모델 알고리즘 프로세스와 같이 IC근처로 분류된 스타벅스 DT도 Target 변수 선택이 중요한 단계입니다.

각각의 종속변수에 대해 feature들과의 상관관계를 분석했습니다. 위 차트의 핵심적인 수치를 요약한 그래프는 아래와 같습니다.

  위 그래프에서 볼 수 있듯이, 공시지가 3년 평균 결과의 feature개수와 값이 가장 높습니다. 49개의 다른 입지 변수들이 공시지가 3년 평균값에 평균적으로 44% 영향을 미칩니다. 이를 통해 종속변수를 선택하고 모델링을 진행했습니다.

2) IC 근처에서 스타벅스 DT 입점시 매출 상승을 위한 중요 변수는?

  위의 그래프는 IC 근처로 분류된 스타벅스DT점의 매출 상승에 영향을 미치는 요인이라고 볼 수 있는 변수들과 중요도입니다. IC근처에 주요기업 개수가 많을 수록 스타벅스DT 입점에 유리한 변수로 작용할 수 있습니다. 또한, 인근에 스타벅스가 존재한다면 오히려 매출 상승에 좋은 영향을 줄 수 있다는 결과를 가지고 있습니다. 주말에 교통량이 많을 수록 IC근처에 스타벅스 DT 입점이 긍정적인 요인이 될 수 있습니다. 

**최적의 성능을 산출하기 위해 가장 최적화된 AdaBoostRegressor 모델을 선택했습니다.

사업체로 분류된 스타벅스 DT점은 주변에 기업 캠퍼스, 산업단지 등이 위치해있어, 회사원들이 주요 고객층으로 자리한 DT점입니다. 대략 40여개의 스타벅스 DT가 사업체 그룹으로 분류되어있으며 이 그룹은 다른 분류 (관광, IC근처, 아파트)와는 다른 입점 변수가 크게 작용할 것으로 예상하고 있습니다.

사업체 그룹으로 분류된 스타벅스 광주신세계DT 전경

1) 머신러닝 모델링 과정 및 결과

사업체 근처로 분류된 스타벅스DT가 최적의 입점 장소인지 아닌지를 분류해내는 종속 변수를 선택하는 데 있어서 위의 프로세스와 같이 네가지의 변수들을 이용했습니다. 아래 그래프를 통해 53개의 다른 입점 변수들이 공시지가 3년 평균 결과값에 평균적으로 51% 영향을 미친다고 나옵니다.

다른 여타의 변수들보다 높은 변수 상관율과 많은 변수들이 영향을 끼치기 때문에 ‘공시지가 3년치 평균’을 사업체 근처 스타벅스DT 입점의 종속 변수로 사용했습니다.

2) 사업체 근처에서 스타벅스 DT 입점시 매출 상승을 위한 중요 변수는?

 사업체 근처에 스타벅스DT 입점시 중요한 변수는, 머신러닝 지도학습 결과 나타난 위의 변수들입니다. (중요 변수 10개만 발췌)  

이를 통해 사업체 근처 스타벅스 DT의 경우, 교통량이 많고 아파트 세대수가 많으며, 인근에 스타벅스가 위치해 있을수록 매출 성장이 높은 곳이라고 분석할 수 있습니다.

앞서 비지도 학습에서 1군집으로 분류된 ‘스타벅스 광주신세계DT’점은 위의 변수들을 어떻게 포함되고 있을 까요?

스타벅스 광주신세계DT점 사업체 근처로 분류된 스타벅스DT점 평균
동단위_아파트_세대수 10765세대 5123세대
교통량 점수 2.5 1.8
인근_스타벅스_거리 1.2km  1.9km
교통량_점수_평일 3 1.8
M_25 9803명 1693명
아파트_매매가_상한 3.3억 3.3억
06~09 28850명 7121명
M_59 13669명 3780명
M_34 13704명 3172명
M_60 31442명 6636명

위의 표와 차트는 머신 러닝 지도학습에서 나타난 중요 변수들에 따른 머신 러닝 비지도 학습에서 1군집으로 분류된 광주 신세계DT점 입지 변수 값의 비교입니다. 아파트 매매가 상한 변수를 제외한 모든 변수에서 평균적으로 스타벅스DT점들보다 굉장히 높은 변수 값을 가지고 있습니다. 이를 통해 비지도 학습에서 나온 1군집 사업체는 머신 러닝 지도학습에서 학습한 결과처럼 중요 변수에서 높은 값을 포함한다고 볼 수 있습니다. 

**최적의 성능을 산출하기 위해 가장 최적화된 AdaBoostRegressor 모델을 선택했습니다.

아파트 그룹으로 분류된 스타벅스 DT점은 총 90여개로 가장 많은 모집단을 포함하고 있습니다. 이 그룹은 주변에 IC근처 및 고속도로 진입로가 없으며, 유명 관광지가 위치하지않고, 크고 작은 산업체가 존재하지 않는 곳입니다. 반면에 주변에 아파트 및 거주 주택들이 많은 DT 지점입니다.

아파트 그룹으로 분류된 스타벅스 송파나루역DT 전경

1) 머신러닝 모델링 과정 및 결과

아파트 근처 그룹으로 분류된 스타벅스DT가 최적의 입점 장소인지를 분류해내는 종속 변수를 선택하는 데 있어서 위의 프로세스와 같이 네가지의 변수들을 이용했습니다.

다른 그룹과 같이 아파트 그룹도 공시지가와 관련된 종속 변수가 상관관계가 높았습니다. 반면, 각 종속변수에 따른 모델링 성능의 경우 ‘6개월 네이버 영수증 개수’를 종속 변수로 선택한 모델이 가장 높았기에, 종속 변수로 공시지가를 선택하지 않았습니다. 아마 아파트 일대란 그룹 자체가 이미 공시지가가 평균적으로 높기에, 변수간의 관계를 추정하는데 어려움이 있을것으로 예상됩니다.

아래 그래프를 통해 9개의 다른 입점 변수들이 네이버 영수증 개수 결과값에 평균적으로 26% 영향을 미침을 알 수 있습니다.

2) 아파트 근처에서 스타벅스 DT 입점시 매출 상승을 위한 중요 변수는?

위의 표와 차트는 비지도 학습에서 1군집으로 분류된 송파나루역, 광주상무, 온천장역 DT점과 지도학습에서 스타벅스DT 입점의 중요 변수로 선정된 TOP10과의 변수 값 비교입니다. 세 곳 모두 대부분 아파트로 분류된 DT점들의 평균 값보다 상위 값을 보유한다고 나옵니다. 특히나 유동 인구에서는 평균값보다 크게 상회한다고 볼 수 있으며 아파트 거리도 상대적으로 가깝다고 볼 수 있습니다.

**최적의 성능을 산출하기 위해 가장 최적화된 LinearSVR 모델을 선택했습니다.

 

앞서 학습한 모델은 해당 지역의 유동인구, 교통량, 아파트 세대수, 주요기업 정보 등을 토대로 공시지가에 기반한 입지점수를 예측하려고 합니다. 이제 이 모델을 이용하여 입지조건을 분석한 결과를 말씀드릴까 합니다.

입점시 높은 매출을 나타낼 것으로 예상되는 장소를 선정하고, 해당 지역의 변수 데이터를 모아 머신러닝 모델에 기반한 입지점수를 산출했습니다. 편의상 위 지역을 미래 전주만성 DT라고 명하겠습니다.

미래 전주만성DT의 위치

위 지역을 좋은 입지 후보로 선정한 이유는 아래와 같습니다.

  1. 국민연금공단 밀접 및 주변에 산업단지들 다수 분포 – 사업체 인근으로 분류 가능
  2. 호남고속도로 나들목 근처 위치 – IC 인근으로 분류 가능

위 지점은 사업체 인근 혹은 IC 인근 둘 모두로 분류될 수 있게, 각각의 모델로 예측 분석을 시도했습니다. 각 분류별 분포를 보면 예측값은 평균점수 정도로 높지 않아 보입니다. 하지만 전주시라는 지역 특성을 고려할 경우 위 예측값은 다른 양상을 나타낼 수 있습니다. 이를 확인하기위해, 전주에 위치한 DT점의 평균 입지점수와 미래 전주만성DT점의 입지점수를 비교해볼까 합니다. 

전주에는 ‘전주덕진광장DT’, ‘전주백제대로DT’, ‘전주송천DT’, ‘전주평화DT’, ‘전주효자DT’ 총 5 군데의 DT가 있습니다. 5군데 DT의 공시지가 평균값을 산출하고, 모델 예측값과 비교했습니다.

두 가지 모델의 예측 결과를 토대로 산출한, 미래 전주만성 DT의 입지점수 예측 범위와 앞서 소개한 5군데 전주 DT점의 평균값을 시각화했습니다. 입지점수 범위의 최솟값은 사업체용 모델의 예측값이며, 최댓값은 IC용 모델의 예측값입니다. 예측 범위는 전주지역내 스타벅스 DT의 공시지가 평균값 기준, 83% ~ 130% 범위를 나타냅니다. 범위 양 끝 값을 모두 고려할 경우, 전주만성 DT의 입지점수는 전주지역내에 있는 스타벅스DT 평균에 비해 성장가능성이 더 높습니다. 

그렇다면 전주만성DT로 선정한 위치의 현재 공시지가 입지점수를 기준으로 미래의 예측값을 비교하면 어떨까요?

현재 점수와 예측 결과 비교

현재 미래 전주만성 DT의 입지점수와 비교하면, IC 분류 모델과 사업체 분류 모델의 예측치는 각각 295%, 189%로 모두 높은 성장을 예측했습니다. 이는 평균적으로 242% 가량의 성장 가능성을 의미하기에, 전주만성에 스타벅스 DT를 입지하는 것은 괜찮은 투자로 보여집니다.

  저희 SPH 데이터 컨설팅팀은 스타벅스 DT점의 유동 인구, 교통량, 공시지가 및 스타벅스 DT 입점에 영향을 미칠 수 있는 여러 주변 변수를 머신러닝에 근거한 데이터 분석을 통해 과정 및 결과를 도출해냈습니다. 

  입지 전략 분석에서 중요한 변수로 꼽힐 수 있는 매출 데이터등의 부재로 예측 결과값이 상이할 수 있습니다. 하지만, 추가적인 내/외부 데이터 소스가 공급될 경우 더 높은 신뢰성을 띈 모델을 구축할 수 있고 한층 더 깊이 있는 컨설팅이 가능할것으로 판단됩니다.

  또한, 이번 입지분석 과정을 통해서 저희 SPH에서 구축한 머신러닝에 기반한 데이터 분석 파이프라인은 추후 다양한 산업 분야에서 활용될 수 있을 것으로 예상합니다. 스타벅스DT 입지 분석 뿐만아니라, 다양한 프랜차이즈 (다이소, 올리브영 등)와 호텔 업계(신라스테이, 롯데시티 호텔 등)의 입지조건에 최적화된 입지 선정을 할 수 있는 알고리즘을 구축할 수 있는 가능성을 확인했습니다.


김도환 데이터 컨설팅 전임 (dhkim@sphinfo.co.kr)

이소린 데이터 컨설팅 전임 (sllee@sphinfo.co.kr)